
Gardening with the Pythia
A model of continuity in a dependent setting
Martin Baillon #

INRIA and LS2N, France

Assia Mahboubi #

INRIA and LS2N, France

Pierre-Marie Pédrot #

INRIA and LS2N, France

Abstract
We generalize to a rich dependent type theory a proof originally developed by Escardó that all
System T functionals are continuous. It relies on the definition of a syntactic model of Baclofen Type
Theory, a type theory where dependent elimination must be strict, into the Calculus of Inductive
Constructions. The model is given by three translations: the axiom translation, that adds an oracle
to the context; the branching translation, based on the dialogue monad, turning every type into a
tree; and finally, a layer of algebraic binary parametricity, binding together the two translations. In
the resulting type theory, every function f : (N → N) → N is externally continuous.
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Introduction

A folklore result from computatibility theory is that any computable function must be
continuous [4]. A more operational way to phrase this property is that a function can only
inspect a finite amount of its argument to produce a finite amount of output. There are
many ways to prove, or even merely state, this theorem, since it depends in particular on
how computable functions are represented [18, 37, 21]. Assuming we pick the λ-calculus
as our favourite computational system, a modern straightforward proof would boil down
to building a semantic model, typically some flavour of complete partial orders (cpos). By
construction, cpos are a specific kind of topological spaces, and all functions are interpreted
as continuous functions in the model. For some types simple enough, cpo-continuity implies
continuity in the traditional sense, thus proving the claim.

Instead of going down the semantic route, Escardó developed an alternative syntactic
technique called effectful forcing [11] to prove the continuity of all functionals (N → N) → N
definable in System T. While semantic models such as cpos are defined inside a non-
computational metatheory, Escardó’s technique amounts to building a model of System T
inside the dependent type theory MLTT, which is intrinsically a programming language with
a built-in notion of computation. The effectful epithet is justified by the fact that the model
construction extends System T with two different kinds of side-effects, and constrains those
two extensions by a logical relation.

A clear advantage of this approach is that there is a simple computational explanation for
why continuity holds in terms of elementary side-effects, which is not immediately apparent
in cpos. This computational aspect is reminiscent of a similar realizability model of NuPRL
internalizing continuity with a system of fresh exceptions [30]. But contrarily to the latter,
the purely syntactic nature of Escardó’s argument can actually be leveraged to interpret
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13:2 Gardening with the Pythia

much richer languages than System T while preserving desirable properties that would be
lost with a semantic realizability model, such as decidability of type-checking.

Indeed, it happens that this technique can be formulated pretty much straightforwardly
as a syntactic model [13, 33]. From this initial observation, we show in this paper how it can
be generalized to a rich dependent type theory similar to MLTT, notably featuring universes
and a form of large dependent elimination. Unfortunately, since Escardó’s model introduces
observable side-effects in the sense of [25], the type theory resulting from our generalization
needs to be slightly weakened down or would otherwise be inconsistent. This effectively
means we provide a model of Baclofen Type Theory (BTT) rather than MLTT. The main
difference between those two theories lies in the typing rule for dependent elimination [28]. In
MLTT, the predicate of a dependent elimination is arbitrary, while it must be computationally
strict in BTT. This is discussed in detail in Section 1.2.

In the end we recover the continuity result of Escardó applied to BTT rather than
System T. That is, from any ⊢BTT f : (N → N) → N we get a proof that it is continuous.

Plan of the paper.

Section 1 exposes preliminaries that are needed to understand this paper. In Section 2, we
describe a particular structure known as dialogue trees that will be critical for the rest of the
paper. Section 3 is dedicated to the model contruction per se. Section 4 provides the proof
that all functions (N → N) → N of this model are indeed continuous. Section 5 frames our
result in a larger context and discusses potential extensions.

1 Preliminaries

1.1 Syntactic Conventions
In this paper, we will work with various flavours of type theory. Our base system will always
be CCω, a predicative version of the Calculus of Constructions featuring an infinite hierarchy
of universes □i and dependent functions, which is summarized in Figure 1. We add inductive
types to this negative fragment, leading to the Calculus of Inductive Constructions (CIC) or
Baclofen Type Theory (BTT) depending on the formulation of dependent elimination. We
will summarize the defining features of BTT in the next section. Since we will manipulate
several type theories, we will write T := CIC as a notational device to make explicit that we
are referring to the ambient type theory.

For brevity, we will define inductive types in a Coq-like syntax, but we will use a pattern-
matching syntax à la Agda for definitions by induction. As an example, we give below the
definition of natural numbers and the resulting formal typing and conversion rules.

Inductive N := O : N | S : N → N

Γ ⊢
Γ ⊢ N : □i

Γ ⊢
Γ ⊢ O : N

Γ ⊢
Γ ⊢ S : N → N

Γ ⊢ P : N → □i Γ ⊢ tO : P O Γ ⊢ tS : Πn : N. P n → P (S n)
Γ ⊢ Nind P tO tS : Πn : N. P n

Nind P tO tS O ≡ tO Nind P tO tS (S n) ≡ tS n (Nind P tO tS n)

We will mostly ignore universe constraints and silently rely on typical ambiguity for the
sake of readability. Definitions indexed by universe variables i, j are meant to be universe-
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A, B, M, N ::= □i | x | M N | λx : A. M | Πx : A. M | Σx : A. B | M.π1 | M.π2 | (M, N)

Γ, ∆ ::= · | Γ, x : A

⊢ ·

Γ ⊢ A : □i

⊢ Γ, x : A

⊢ Γ (x : A) ∈ Γ

Γ ⊢ x : A

⊢ Γ i < j

Γ ⊢ □i : □j

Γ ⊢ A : □i Γ ⊢ M : B

Γ, x : A ⊢ M : B

Γ ⊢ A : □i Γ, x : A ⊢ B : □j

Γ ⊢ Πx : A. B : □max(i,j)

Γ ⊢ M : Πx : A. B Γ ⊢ N : A

Γ ⊢ M N : B{x := N}

Γ, x : A ⊢ M : B Γ ⊢ Πx : A. B : □i

Γ ⊢ λx : A. M : Πx : A. B

Γ ⊢ M : A Γ ⊢ B : □i Γ ⊢ A ≡ B

Γ ⊢ M : B

Γ ⊢ A : □i Γ, x : A ⊢ B : □j

Γ ⊢ Σx : A. B : □max(i,j)

Γ ⊢ M : Σx : A. B

Γ ⊢ M.π1 : A

Γ ⊢ M : Σx : A. B

Γ ⊢ M.π2 : B{x := M.π1}

Γ ⊢ M : A Γ ⊢ N : B{x := M} Σx : A. B : □i

Γ ⊢ (M, N) : Σx : A. B (conversion omitted)

Figure 1 Syntax of CCω extended with Σ-types

polymorphic in those variables [34]. All the translations we will give can be annotated with
universe variables to handle an arbitrary hierarchy of universes, but we will refrain from
doing so. We sometimes use implicit function arguments, which we bind with braces in
definitions.

Writing explicit terms in type theory can quickly become cumbersome for proofs, hence
we will omit them when the computational content is not important and write instead an
underscore as in ⊢ _ : A.

1.2 Dependence in an Effectful Setting

In this paper, we will build type theories that feature computational effects. Regrettably,
adding effects to dependent type theory is not without consequences. They make indeed
observable the difference between call-by-value and call-by-name [20], a phenomenon that
puts us in front of a dilemma [25]. If we stick to by-name, we preserve the behaviour of the
negative fragment, i.e. Π-types, but we break dependent elimination. If we stick to by-value,
we now preserve dependent elimination, but functions become quite different to what one is
used to, as substitution is now restricted to syntactic values. For historical reasons, there is
a clear bias in type theory towards by-name, and we will follow the same doctrine.

As explained above, an effectful call-by-name type theory does not support full-blown
dependent elimination in general. As dependent elimination is quite a critical feature [23], this
might look concerning. Thankfully, most effectful theories we know of support a restricted
form of it, which essentially amounts to forcing the predicate used in the eliminator to be
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strict in its inductive argument1. The resulting theory is known as Baclofen Type Theory [28],
or BTT for short.

Contrarily to MLTT, which has a single dependent eliminator Iind for any given inductive
type I, BTT has two eliminators: a non-dependent one Icse, and a strict dependent one
Irec. These three eliminators enjoy the same computational ι-rules, i.e. they reduce on
constructors. The difference lies in their typing rules. The predicate of Icse does not depend
on its inductive argument, i.e. it is basically simply-typed. Meanwhile, the predicate of Irec
is wrapped in a storage operator [19] Istr that locally evaluates its argument in a by-value
fashion. This guarantees that it will only ever be applied to values, and never to effectful, or
non-standard, inductive terms. The important observation is that Istr can be defined in a
systematic way out of Icse, namely it is simply an η-expansion in CPS style. To make things
self-contained, we recall below the BTT eliminators for N.

Γ ⊢ P : □ Γ ⊢ tO : P Γ ⊢ tS : N → P → P

Γ ⊢ Ncse P tO tS : N → P

Γ ⊢ P : N → □ Γ ⊢ tO : Nstr O P Γ ⊢ tS : Π(n : N).Nstr n P → Nstr (S n) P

Γ ⊢ Nrec P tO tS : Π(n : N).Nstr n P

where Nstr (n : N) (P : N → □) : □ :=
Ncse ((N → □) → □) (λ(Q : N → □). Q O)

(λ(m : N) (_ : (N → □) → □) (Q : N → □). Q (S m)) n P .

From within CIC, one can prove that Π(n : N) (P : N → □).Nstr n P = P n. Hence, this
strictification is akin to double-negation translation, in so far as BTT is finer-grained than
CIC, just as LJ is finer-grained than LK where ¬¬A ↔ A. Note that in particular BTT is a
subset of CIC, a fact on which we will rely on silently in this paper.

1.3 Continuity
In the remainder of this article, we suppose given two types ⊢T I : □0 and ⊢T O : I → □0.
For simplicity, we set them in the lowest universe level, but all of the constructions to come
can handle an arbitrary base level by bumping them by an appropriate amount.

The type I is to be understood as a type of input or questions to a black-box, called an
oracle. Dually, O is the type of output or answers from the oracle. Since O depends on I,
we can encode a pretty much arbitrary interaction. Finally, we define the type of oracles
as Q := Π(i : I). O i. A reader more inclined towards computer science could also consider
that O and I describe an interface for system calls, and Q is the type of operating systems
implementing these calls.

Let us formally define the notion of continuity over Q.

▶ Definition 1. Given α1, α2 : Q and ℓ : list I, we say that α1 and α2 are finitely equal on ℓ,
written α1 ≈ℓ α2 when the following inductively defined predicate holds.

α1 ≈nil α2

α1 i = α2 i α1 ≈l α2

α1 ≈(cons i ℓ) α2

1 As in programming language theory, not as in higher category theory.
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▶ Definition 2. We say that a function is continuous when it satisfies the continuity predicate

C : Π{A : □}. (Q → A) → □

C f := Π(α : Q). Σ(ℓ : list I). Π(β : Q). α ≈ℓ β → f α = f β.

This definition captures in a generic way the intuitive notion that a computable functional
only needs a finite amount of information from its argument to produce an output. Note that
in particular the list of points ℓ where the function is evaluated depends on the argument
α, so this notion of continuity is weaker than uniform continuity, where the two quantifiers
for ℓ and α are swapped. Depending on the expressivity of T, one can also consider weaker
variants where the existential is squashed with various proof-irrelevant modalities [12, 30, 31].

2 Dialogue Trees and Intensionality

2.1 Talking with Trees
It is now time to justify the title of this article by giving some explanations on the links
between trees, oracles and functions. We consider an operator D : □ → □, which given a
type A : □, associates the type of well-founded trees, with leaves labelled in A. Each inner
node is labelled with a certain i : I and has O i children. In T, this amounts to the following
inductive definition:

Inductive D (A : □) : □ := η : A → D A | β : Π(i : I). (O i → D A) → D A.

This type of dialogue trees is known under several other names and has a lot of close
relatives [36, 26, 22, 16, 39]. They can be easily interpreted as functionals of type Q → A.
Intuitively, every inner node is an inert call to an oracle α : Q, and the answer is the label of
the leaf. This interpretation is implemented by a recursively defined dialogue function.

∂ : Π{A : □} (α : Q) (d : D A). A

∂ α (η x) := x

∂ α (β i k) := ∂ α (k (α i)).

▶ Definition 3 (Eloquent functions). A function f : Q → A is said to be eloquent if there is
a dialogue tree d : D A and a proof that Πα : Q. f α = ∂ α d.

Representing functions as trees is a well-known way to extract intensional content from
them [17, 14]. Moreover, elements of D A being well-founded, we get the following.

▶ Theorem 4 (Continuity). Eloquent functions are continuous.

Proof. The proof of the theorem is straightforward by induction on the dialogue tree d. ◀

This theorem is the fundamental insight of the proof. The rest of the paper is devoted to the
construction of a model where every function is eloquent and therefore continuous.

2.2 Liberating the Dialogue Monad
In an extensional enough setting, the D type former turns out to be a monad. The η natural
transformation is already part of the definition, and we can recursively define a bind function:

bind : Π{A B : □} (f : A → D B) (d : D A).D B

bind f (η x) := f x

bind f (β i k) := β i (λ(o : O i). bind f (k o))

CSL 2022



13:6 Gardening with the Pythia

▶ Lemma 5. Assuming function extensionality, (D, η, bind) is a monad.

Since we want to build a model of dependent type theory, we need to preserve a call-by-
name equational theory, i.e. generated by the unrestricted β-rule. Following [28], this means
that we need to interpret types as some kind of D-algebras. Unfortunately, the standard
categorical definition of monads and their algebras is not usable in our context because it
fundamentally relies on funext, which is not available in CIC. Thankfully, even by categorical
standards, D is a very particular monad.

▶ Definition 6. A free monad in CIC is a parameterized inductive type M : □ → □ with a
dedicated constructor η : Π(A : □). A → M A and a finite set of constructors

ci : Π(A : □). Φi (M A) → M A

where Φi : □ → □ is a type former syntactically strictly positive in its argument.

Note that the formal definition of free monad from category theory requires a forgetful
functor to specify against what the monad would be free. The closest thing to our definition
would be a free monad relatively to pointed functors, but even there our definition is stricter.
A free monad can be thought of as a way to extend a type with unspecified, inert side-effects,
a trivial form of algebraic effects [27, 1]. Since we have neither QITs [2] nor HITs [38] in CIC,
we cannot enforce equations on these effects but we can still go a long way.

Free monads in CIC enjoy a lot of interesting properties. As the name implies, they
are indeed monads. Again, the η function is given by definition, and bind can be defined
functorially by induction similarly to the D case. Furthermore, the algebras of a free monad
can be described in an intensionally-friendly way.

▶ Definition 7. Given M as above, the type of intensional M-algebras is the record type

□□M := {A : □; . . . ; pi : Φi A → A; . . .}.

where the Φi are the same as in Definition 6.

▶ Theorem 8. Assuming funext, □□M is isomorphic to the usual definition of M-algebras.

Said otherwise, the pi functions are equivalent to the usual morphism hA : M A → A

preserving the monadic structure, except that this presentation does not require any equation.
This results in the main advantage of intensional algebras, namely that they are closed
under product type in a purely intensional setting. That is, if A : □ and B : A → □□M then
Πx : A. (B x).π1 can be equipped with an intensional algebra structure defined pointwise.
This solves a similar issue encountered in [35].

It is clear that D is a free monad, so we can define similarly intensional D-algebras.

▶ Definition 9 (Pythias). A pythia for A : □ is a term pA : Π(i : I). (O i → A) → A.

Per the above theorem, pythias for A are extensionally in one-to-one correspondence with
D-algebra structures over A, but are much better behaved intensionally. This will be the
crux of the branching translation from Section 3.3.
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3 The Syntactic Model

3.1 Overview

We prove that all BTT functions are continuous using a generalization of Escardó’s model.
While the latter only provides a model of System T, a simply-typed language, our model
accomodates not only dependent types, but also universes and inductive types equipped with
a strict form of dependent elimination. It is given as a program translation, and thus belongs
to the class of syntactic models [13, 7]. The final model is built in three stages, namely

1. An axiom model (Section 3.2),
2. A branching model (Section 3.3),
3. An algebraic parametricity model (Section 3.4).

The first two models are standalone, and the third one glues them together. Each
model can be explained computationally. The axiom model adds an blackbox oracle as a
global variable. Asking the oracle is just function application, so there is no internal way
to observe calls to the oracle. The branching model does the exact converse, as it provides
an oracle in a purely inert way. Every single call to the branching oracle is tracked as a
node of a dialogue tree, a representation that is reminiscent of game semantics. Finally,
the algebraic parametricity model internalizes the fact that these two interpretations are
computing essentially the same thing, behaving like a proof-relevant logical relation.

3.2 Axiom Translation

Let us fix a reserved variable α : Q. The axiom translation simply consists in adding α as
the first variable of the context. Everywhere else, this translation is transparent. Reserving
a variable has no technical consequence, if we were to use De Bruijn indices it just amounts
to shifting them all by one. We will also annotate both free and bound variables with an a

subscript for readability of the future parts of the paper, where we mix together different
translations. We formally give the translation of the negative fragment in Figure 2.

[x]a := xa

[λx : A. M ]a := λxa : JAKa. [M ]a
[M N ]a := [M ]a [N ]a
[Πx : A. B]a := Πxa : JAKa. JBKa

[□i]a := □i

JAKa := [A]a
J·Ka := α : Q
JΓ, x : AKa := JΓKa, xa : JAKa

Figure 2 Axiom Translation (negative fragment)

▶ Theorem 10. The axiom translation is a trivial syntactic model of CIC and hence of BTT.

3.3 Branching Translation

Using the results from Section 2.2, we can use a simplified form of the weaning construction [28]
to define the branching translation. It all boils down to interpreting types as intensional
D-algebras, whose type will be defined as

□□b := Σ(A : □). Π(i : I). (O i → A) → A.

CSL 2022
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[x]b := xb

[λx : A. M ]b := λxb : JAKb. [M ]b
[M N ]b := [M ]b [N ]b

JAKb := [A]b.π1

J·Kb := ·
JΓ, x : AKb := JΓKb, xb : JAKb

J□Kb := □□b

β□ := λ(i : I) (k : O i → □□b).℧b

JΠx : A. BKb := Πxb : JAKb. JBKb

βΠx:A. B := λ(i : I) (k : O i → Πx : JAKb. JBKb) (x : JAKb). βB i (λo : O i. k o x)

Figure 3 Branching Translation (negative fragment)

Figure 3 defines the negative branching translation, which translates a type A as [A]b : □□b,
i.e. a pair (JAKb, βA) where JAKb : □ and βA is a pythia for JAKb. For readability, we give
the translation of types as these two components through a slight abuse of notation.

The main difficulty is to endow □□b with a D-algebra structure. Since there is no constraint
on this structure, we simply assume as a parameter of the translation a dummy D-algebra
℧b : □□b. We will similarly need an inhabitant ωb : ℧b.π1 to define dependent elimination.
There are many possible choices for ℧b, the simplest one being the unit type which is trivially
inhabited and algebraic. As a simple instance of weaning, we get the following.

▶ Proposition 11 (CCω Soundness). We have the following.
If M ≡CCω

N then [M ]b ≡T [N ]b.
If Γ ⊢CCω M : A then JΓKb ⊢T [M ]b : JAKb.

The interpretation of inductive types is fairly straightforward. Given an inductive type
I, we create an inductive type Ib whose constructors are the pointwise translation of the
constructors of I, together with an additional βI constructor turning it into a free D-algebra.
We give as an example below the translation of N, which will be the running example for the
remainder of this paper. Parameters and indices present no additional difficulty and we refer
to [28] for more details.

Inductive Nb : □ := Ob : Nb | Sb : Nb → Nb | βN : Π(i : I). (O i → Nb) → Nb.

An astute reader would have remarked that JNKb is not defined in the same way as in
Escardó’s proof. This particular fact and its consequences are further discussed in Section 5.1.

▶ Theorem 12. For any inductive type I, its branching translation Ib is well-typed and
satisfies the strict positivity criterion.

We must now implement the eliminators. We first define the non-dependent ones.

[Ncse]b : ΠP : □□b. JP Kb → (Nb → JP Kb → JP Kb) → Nb → JP Kb

[Ncse]b P pO pS Ob := pO

[Ncse]b P pO pS (Sb n) := pS n ([Ncse]b P pO pS n)
[Ncse]b P pO pS (βN i k) := βP i (λ(o : O i). [Ncse]b P pO pS (k o))

As P : J□Kb, it has a pythia βP : Π(i : I). (O i → JP Kb) → JP Kb. Every time we encounter
a branching occurence of βN, we can thus use βP and propagate the call recursively in the
branches. This is the usual by-name semantics of recursors.

However, problems arise with dependent elimination. Given P : Nb → □□b and subproofs
for Ob and Sb, there is no clear way to produce a term of type (P (βN i k)).π1. There is
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actually a good reason for that: if it were possible, this would make T inconsistent [25].
Following [28], we therefore restrict ourselves to a strict dependent elimination, relying on
the storage operator Nstr from Section 1.2. Since it is given in direct style, its translation is
systematic.

▶ Lemma 13. We have the following conversions.
1. [Nstr]b Ob P ≡ P Ob

2. [Nstr]b (Sb n) P ≡ P (Sb n)
3. [Nstr]b (βN i k) P ≡ ℧b

Note that the two first equations above are a consequence of the conversion rules of Ncse
and thus hold in any model of BTT. Only the last one is specific to the current model at
hand. Using this, we define the dependent eliminator below. Thanks to the fact that the
predicate is wrapped in a storage operator, it is able to return a dummy term when applied
to an effectful argument.

Nrec : ΠP : N → □. P O →
(Πn : N.Nstr n P → Nstr (S n) P ) → Πn : N.Nstr n P

[Nrec]b P pO pS Ob := pO

[Nrec]b P pO pS (Sb n) := pS n ([Nrec]b P pO pS n)
[Nrec]b P pO pS (βN i k) := ωb

▶ Theorem 14. The branching translation provides a syntactic model of BTT.

3.4 Algebraic Parametricity Translation
Following Escardó, we now have to relate the two translations. We achieve this through a
third layer of algebraic parametricity. There are two major differences compared to Escardó’s
model [11]. The first one is that the logical relation does not live in the metatheory anymore
and is defined as a syntactic model similar to parametricity [5]. This is not unexpected, but
it is needed to interpret dependent types in a satisfactory way. The second difference is that
the parametricity predicate itself must be endowed with an algebraic structure. This was a
much more surprising structure that happens to be required to interpret large dependent
elimination.

Intuitively, every type A : □ is translated as a predicate JAKε : JAKa → JAKb → □. Note
that α : Q is implicitly part of the context as in the axiom model. As explained above, we
also ask for the predicate to be D-algebraic in the sense that it must be equipped with a
proof

βε
A : Π(xa : JAKa) (i : I) (k : O i → JAKb). JAKε xa (k (α i)) → JAKε xa (βA i k).

We will write the type of such algebraic parametricity predicates as

□□ε (Aa : J□Ka) (Ab : J□Kb) := Σ(Aε : JAKa → JAKb → □).
Π(xa : JAKa) (i : I) (k : O i → JAKb) (xε : Aε xa (k (α i))).

Aε xa (βA i k)

Just as we did for the branching translation, given A : □i we define separately the
predicate JAKε and the proof of parametric algebraicity βε

A. We define the translation in
Figure 4. As before we also ask for a dummy algebraic predicate ℧ε : Π(A : □).□□ε A ℧b

which can be taken to be always a trivially inhabited predicate, together with an arbitrary
proof ωε : Π(A : □) (x : A). (℧ε A).π1 x ωb.

CSL 2022
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J□Kε := λ(Aa : J□Ka) (Ab : J□Kb).□□ε Aa Ab

βε
□ := λ(Aa : J□Ka) (i : I) (k : O i → J□Kb) (Aε : J□Kε Aa (k (α i))).℧ε Aa

[x]ε := xε

[λx : A. M ]ε := λ(xa : JAKa) (xb : JAKb) (xε : JAKε xa xb). [M ]ε
[M N ]ε := [M ]ε [N ]a [N ]b [N ]ε
JΠx : A. BKε := λ(fa : JΠx : A. BKa) (fb : JΠx : A. BKb).

Π(xa : JAKa) (xb : JAKb) (xε : JAKε xa xb). JBKε (fa xa) (fb xb)
βε

Πx:A. B := λ(fa : JΠx : A. BKa) (i : I) (k : O i → JΠx : A. BKb).
λ(fε : JΠx : A. BKε fa (k (α i))).

λ(xa : JAKa) (xb : JAKb) (xε : JAKε xa xb).
βε

B (fa xa) i (λ(o : O i). k o xb) (fε xa xb xε)
JAKε := [A]ε.π1

J·Kε := α : Q
JΓ, x : AKε := JΓKε, xa : JAKa, xb : JAKb, xε : JAKε xa xb

Figure 4 Algebraic Parametricity Translation (negative fragment)

Inductive Nε (α : Q) : N → Nb → □ :=
| Oε : Nε α O Ob

| Sε : Π(na : N) (nb : Nb) (nε : Nε α na nb).Nε α (S na) (Sb nb)
| βε

N : Π(na : N) (i : I) (k : O i → Nb) (nε : Nε α na (k (α i))).Nε α na (βN i k)

[N]ε := (Nε α, βε
N α) [O]ε := Oε α [S]ε := Sε α

Figure 5 Algebraic Parametricity for N

▶ Theorem 15 (CCω Soundness). We have the following.
If M ≡CCω

N then [M ]ε ≡T [N ]ε.
If Γ ⊢CCω M : A then JΓKε ⊢T [M ]ε : JAKε [M ]a [M ]b.

The algebraic parametric translation of inductive types sticks closely to the branching
one. Given an inductive type I, we create an inductive type Iε whose constructors are the
pointwise J·Kε translation of those of I. An additional constructor βε

I freely implements the
algebraicity requirement. Since α : Q is implicitly part of the translated context, we have to
take it as a parameter of the translated inductive type and explicitly pass it as an argument
when interpreting those types and their proof of algebraicity. We give the translation on
our running example in Figure 5. Once again, parameters and indices present no particular
problem and are handled similarly to [28].

▶ Theorem 16. For any inductive type I, its algebraic parametricity translation Iε is well
typed and satisfies the positivity criterion.

As for the branching translation, we retrieve a restricted form of dependent elimination
based on storage operators. The argument is virtually the same, but now at the level of
parametricity, which makes the syntactic burden even heavier since we now have everything
repeated three times. To enhance readability, we will use the following shorthand for binders:

⟨x : A⟩ := xa : JAKa, xb : JAKb, xε : JAKε xa xb

and similarly for application to variables. We give the eliminators for our running example
in this lighter syntax, which is already the limit of what can be done on paper.
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[Ncse]ε : Π⟨P : □⟩ ⟨pO : P ⟩ ⟨pS : N → P → P ⟩ ⟨n : N⟩.
JP Kε [Ncse P pO pS n]a [Ncse P pO pS n]b

[Ncse]ε ⟨P ⟩ ⟨pO⟩ ⟨pS⟩ _ _ Oε := pOε

[Ncse]ε ⟨P ⟩ ⟨pO⟩ ⟨pS⟩ _ _ (Sε ⟨n⟩) := pSε ⟨n⟩ ([Ncse]ε ⟨P ⟩ ⟨pO⟩ ⟨pS⟩ ⟨n⟩)
[Ncse]ε ⟨P ⟩ ⟨pO⟩ ⟨pS⟩ _ _ (βε

N na i k nε) := βε
P

([Ncse P pO pS]a na) i

(λ(o : O i). [Ncse P pO pS]b (k o))
([Ncse]ε ⟨P ⟩ ⟨pO⟩ ⟨pS⟩ na (k (α i)) nε)

Note that the βε
N case explicitly calls the global axiom α to relate the oracular term with

the branching one. This is one of the few places that introduce an actual use of the oracle in
the translation, by opposition to merely passing it around.

We define [Nstr]ε as before, using the fact it is given directly in the source in terms of
Ncse. In particular we do not have to write its translation explicitly. Finally, we can define
the dependent eliminators, following the same structure as before.

[Nrec]ε : Π⟨P : N → □⟩ ⟨pO : P O⟩ ⟨pS : Π(n : N).Nstr n P → Nstr (S n) P ⟩.
Π⟨n : N⟩. JNstr n P Kε [Nrec P pO pS n]a [Nrec P pO pS n]b

[Nrec]ε ⟨P ⟩ ⟨pO⟩ ⟨pS⟩ _ _ Oε := pOε

[Nrec]ε ⟨P ⟩ ⟨pO⟩ ⟨pS⟩ _ _ (Sε ⟨n⟩) := pSε ⟨n⟩ ([Nrec]ε ⟨P ⟩ ⟨pO⟩ ⟨pS⟩ ⟨n⟩)
[Nrec]ε ⟨P ⟩ ⟨pO⟩ ⟨pS⟩ _ _ (βε

N na i k nε) := ωε (Pa na) ([Nrec P pO pS]a na)

Following the results from [28], this translation can be generalized to any inductive type,
potentially with parameters and indices. Indeed, it basically amounts to the composition of
weaning with binary parametricity.

▶ Theorem 17. Algebraic parametricity is a syntactic model of BTT.

4 Continuity of (N → N) → N

This section is dedicated to the proof of the main theorem which we formally state below.

▶ Theorem 18. If ⊢BTT f : (N → N) → N then ⊢CIC _ : C f .

Proof. The proof follows the same structure as Escardó’s proof for System T, and requires a
clever instance of the model described above.
In short, we will define an element γb : Nb → Nb and lift it as a constant γ : N → N in the
source theory. Computationally, it behaves as an impure function that tracks the arguments it
is called on. We will then use it to prove that f is eloquent, with tree witness [f γ]b ≡ [f ]b γb.
Before getting to the nitty-gritty, we will fix henceforth the oracular type parameters for the
remainder of this section as

I := N and O := λ(i : I).N.

Some results exposed in this section are still independent from this precise choice of oracle.
When this is the case, we will stick to the Q notation to highlight this fact.

Since Nb is essentially a free algebra, we can define a dialogue function ∂N similar to the
one defined in Section 2.

∂N : Q → Nb → N
∂N α Ob := O
∂N α (Sb nb) := S (∂N α nb)
∂N α (βN i k) := ∂N α (k (α i)).
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▶ Proposition 19 (Unicity of specification). There is a proof

⊢T _ : Π(α : Q) ⟨n : N⟩. na = ∂N α nb.

Proof. By induction on nε. ◀

▶ Proposition 20 (Generic parametricity). There is a proof

⊢T _ : Π(α : Q) (nb : Nb).Nε α (∂N α nb) nb.

Proof. By induction on nb. ◀

Let us now define our generic element γb : Nb → Nb.

▶ Definition 21 (Generic tree). We define in T the generic tree t as

t : N → Nb

t := λ(n : N). βN n ηN

where ηN : N → Nb

ηN O := Ob

ηN (S n) := Sb (ηN n).

▶ Lemma 22 (Fundamental property of the generic tree). We have a proof

⊢T _ : Π(α : N → N) (n : N). ∂N α (t n) = α n.

Proof. Immediate by the definition of the ∂ function. ◀

▶ Definition 23 (Generic element). We define the generic element γb : Nb → Nb as follows.

γb nb := γ0 O nb where γ0 : N → Nb → Nb

γ0 a Ob := t a

γ0 a (Sb nb) := γ0 (S a) nb

γ0 a (βN i k) := βN i (λo : N. γ0 a (k o)).

Intuitively, γb adds a layer to its argument, replacing each leaf by a t n, where n is the
number of Sb encountered in the branch. It has the following property.

▶ Lemma 24 (Fundamental property of the generic element). We have a proof

⊢T _ : Π(α : N → N) (nb : Nb). ∂N α (γb nb) = α (∂N α nb).

Proof. Straightforward by induction on nb, using Lemma 22 for the Ob case. ◀

▶ Proposition 25. The γb term can be lifted to a function γ : N → N in the source theory.

Proof. It is sufficient to derive the following sequents, the first two being trivial.

α : N → N ⊢T α : JN → NKa ⊢T γb : JN → NKb α : N → N ⊢T γε : JN → NKε α γb

For γε, assuming ⟨n : N⟩ we have to prove JNKε (α na) (γb nb). By Proposition 19,
this is the same as JNKε (α (∂N α nb)) (γb nb). By Proposition 24, this is the same as
JNKε (∂N α (γb nb)) (γb nb). We conclude by Proposition 20. ◀

We can now get to the proof of the main result. Let ⊢BTT f : (N → N) → N. Since
γ : N → N can be reflected from the model into BTT, we can consider the term ⊢BTT f γ : N.
By soundness, it results in the three terms below.

α : N → N ⊢T [f ]a α : N
⊢T [f ]b γb : Nb

α : N → N ⊢T [f ]ε α γb γε : Nε α ([f ]a α) ([f ]b γb)

Applying Proposition 19 to [f ]a, [f ]b and [f ]ε, we get:
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⊢T _ : Π(α : N → N). [f ]a α = ∂N α ([f ]b γb)

Since f is a term in BTT that does not use any impure extension of the model, it is easy
to check that [f ]a ≡ f . Therefore, f is eloquent. By Theorem 4, this implies that f is
continuous, which concludes our proof. ◀

5 Discussion and Related Work

5.1 Comparison with Similar Models
As already stated, our proof follows the argument given by Escardó [11] for System T, which
can also be found as a close variant by Sterling that uses streams instead of trees [35]. Yet,
in order to scale to BTT there are a few non-trivial technical differences in our version that
ought to be highlighted.

The first obvious one is that Escardó’s model does not really qualify as a syntactic model
of System T. Rather, it is a model in a type-theoretic metatheory. The difference is subtle,
and lies in the fact that the source language is an AST of the ambient type theory in Escardó’s
model, while there is no such thing in sight in our variant. Actually, this would not even
have been possible because in order to internalize type theory inside itself, one needs some
form of induction-recursion to handle universes. Morally, we got rid of the middle man of an
overaching standard syntactic model of BTT [3].

Another major difference is that the parametricity predicates must be compatible with
the D-algebra structure of the underlying types. This is needed to interpret large elimination,
which is absent from System T. This requirement is thus void in Escardó’s model. It was
a surprising part of the model design, but in hindsight it is obvious that it would pop up
eventually. Furthermore, both to preserve conversion and to scale to richer inductive types,
the parametricity predicate needs to be given in an inductive way following the underlying
source type, rather than as an ad-hoc equality between two terms.

We emphasized that our interpretation of N is not the same as Escardó’s, which uses
instead JN′Kb := D N. The reason for that has been already briefly observed in [35] but it
is worth elaborating here. Said bluntly, Escardó’s interpretation is actually not a model of
System T. While it is indeed possible to write a simply-typed eliminator

N′
cse : Π(P : □). P → (N′ → P → P ) → P

it does not enjoy the correct computational behaviour. Namely, in general

N′
cse P pO pS (S′ n) ̸≡ pS n (N′

cse P pO pS n).

A typical situation where this equation would break happens when n is an effectful term,
i.e. its translation is of the form β i k. This can be explained by the fact that recursive
constructors in effectful call-by-name need to thunk their arguments, i.e. pattern-matching
on the head of an inductive term must not evaluate the subterms of the constructor. This is
not the case for Escardó’s intepretation, which is closer to a call-by-value embedding of N in
call-by-name. Since dependent type theory makes the requirement that this equation holds
in the typing rules themselves, we need to pick the right interpretation of N.

Escardó and Xu also gave related models to internalize uniform continuity [40, 10].
Contrarily to the above one, they build these models out of sheaves, which have also been
used similarly by Coquand and Jaber [8, 9]. Sheaves form a locally closed cartesian category,
hence they only implement a small fragment of MLTT. It is well-known that the universe
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of sheaves is not a sheaf in general, and in particular the existence of universes in the first
model is an open problem. We have several remarks to make. First, assuming univalence and
HITs in the target theory, it turns out to be straightforward to build a syntactic sheaf model
of MLTT [32]. Univalence is typically needed to relax the strict uniqueness requirement of
sheaves into its fibrant version.
More interestingly, a closer look at [32] shows that univalent sheafification is basically the
HIT

Inductive S (A : □) : □ :=
| η : A → S A

| β : Π(i : I). (O i → S A) → S A

| σ1 : Π(i : I) (x : S A). β i (λ(o : O i). x) = x

| σ2 : . . .

where O : I → hProp and σ2 is such that (β, σ1, σ2) prove that λ(x : S A) (_ : O i). x

defines an equivalence S A ∼= (O i → S A). The relationship to D is obvious, and leads
us to challenge Escardó’s claim that the dialogue model is not a sheaf model. The higher
equalities are precisely what is missing to implement full dependent elimination, i.e. to
ensure that sheafification preserves observational purity. Otherwise said, the dialogue monad
is an impure variant of the sheafification monad, giving a curious and unexpected double
entendre to the phrase effectful forcing.

Rahli et al. [30] give another proof of uniform continuity for NuPRL using a form of
delimited exceptions. Computationally, their model tracks the accesses to the argument
of functions by passing them exception-raising placeholders. The control flow is inverted
w.r.t. Escardó’s model, which requires non-terminating realizers, but we believe that the
fundamental mechanism is similar. In the same context Rahli et al. [31] defines a sheaf model
with bar induction in mind, but this principle is inextricably tied to uniform continuity [6].

5.2 Internalization
In this paper we have constructed a model of BTT that associates to every closed term
⊢ f : (N → N) → N a proof in CIC that it is continuous. Can we do better? First, we know
that there is a major limitation. Indeed, MLTT extended with the internal statement

Πf : (N → N) → N.C f

results in an inconsistent theory [12]. We will call this property internal continuity below.
The proof crucially relies on two ingredients, namely congruence of conversion and large
dependent elimination. Thus, there might be hope for BTT where the latter is restricted.

▶ Theorem 26. Internal continuity holds in our model iff it holds in T.

This is obviously disappointing, since it implies that T is inconsistent. One can then
wonder if it is possible to aim for a middle ground, where we internalize the modulus of
continuity itself, but keep the computation of this modulus in the target. That is, construct
a term of type Π(α : N → N) ⟨f : (N → N) → N⟩. JC fK, where JAK stands for the triple
Σ(xa : JAKa) (xb : JAKb). JAKε xa xb. The implication regarding the target theory is a bit
more subtle.

▶ Lemma 27. If we have ⊢T _ : Π(α : N → N) ⟨f : (N → N) → N⟩. JC fK then we can also
get a proof that ⊢T _ : Πf : (N → N) → N. f ∼(N→N)→N f → C f , where ∼(N→N)→N is the
canonical setoid equality on the functional type.
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Proof. Let f : (N → N) → N such that f ∼(N→N)→N f , and α : N → N in T. We define a
term f̃ : J(N → N) → NK as follows.

[f̃ ]a := f [f̃ ]b := λ(ub : JNKb → JNKb). ηN (f (λn : N. ∂N α (ub (ηN n))))

These two terms are proved to be in relation by the parametricity predicate by applying
the preservation of pointwise equality followed by an induction on the parametricity proof
of the argument. Finally, if we have a term of type Π(α : N → N) ⟨f : (N → N) → N⟩. JC fK,
then we have JC f̃K and thus C f by projection. ◀

This lemma implies in particular that if our target theory features funext, internalization
of the modulus of continuity implies continuity of all functions f : (N → N) → N in T.
Thus, by the aforementioned theorem, our theory is inconsistent. Conversely, if our theory is
consistent, internalization of the modulus of continuity is out of reach.

As funext is independent from CIC, internalization of the modulus of continuity is unattain-
able if our target theory is plain CIC. If our target theory does not feature funext, the
diagonalization argument of Escardó and Xu does not work anymore.

However, in BTT it is unclear whether it is possible to construct a similar paradox, or if
there exists a model of it which validates the internalization of the modulus of continuity.
This is still an open question. We nonetheless conjecture that adding an additional layer of
presheaves to allow a varying number of oracles in the context could be the key to realize
such a model. Indeed, adding a modal type of exceptions to MLTT is precisely what permits
to go from the external Markov’s rule [29] to the internal Markov’s principle [24]. If we were
able to locally create a fresh generic element independent from all the previously allocated
ones, it seems that we could turn the external continuity rule into an internal one, mimicking
what happens for the implementation of Markov’s principle. Fresh exceptions are precisely
used by Rahli et al. [30] to get what amounts to an independent generic element at every
call, so this argument does not seem far-fetched. We leave this to future work.

5.3 Coq Formalization
The results from this paper have been formalized in Coq using a presentation similar to
category with families. It is a shallow embedding in the style of [15], hence in particular all
conversions are interpreted as definitional equalities. The development relies on universe
polymorphism to implement universes in the model, but it could have been avoided at the
cost of duplicating the code for every level existing in the hierarchy. As usual, we use negative
pairs to handle context extensions in a definitional way. Apart from this, the development
does not make use of any fancier feature from the Coq kernel. The code can be found at
https://gitlab.inria.fr/mbaillon/gardening-with-the-pythia.

Conclusion

This paper gives a purely syntactic proof that functionals of a rich dependent type theory
are continuous. Not only is the argument syntactic, but it is also expressed as a program
translation into another dependent type theory. Thus, everything computes by construction
and conversion in the source is interpreted as conversion in the target. Despite being a
generalization of a simpler proof by Escardó, the dependently-typed presentation gives more
insight about the constraints one has to respect for it to work properly, and highlights a few
hidden flaws of the original version. Finally, the model gives empirical foothold to the claim
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that BTT is a natural setting for dependently-typed effects. We believe it is not merely an
ad-hoc set of rules, but a system that keeps appearing in various contexts, and thus a generic
effectful type theory.
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